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ABSTRACT

A numerical method of calculating deformations and
stresses in an elastic solid propellant grain having a circular perfora-
tion and flat ends and bonded to a rigid motor case was used to calcu-
late stresses and deformations caused by axial acceleration loading.
Two grain end situations were considered: both ends free and one end
free with the other bonded to the motor case. The dimensionless dis-
placements of critical parts of the grain were calculated as functions of
the inner-to-outer radius ratio o, the length-to-diameter ratio A\, and
Poisson's ratio v, The dimensionless radial and shear stresses at the
propellant-motor case interface were also calculated as well as the
percentage of total load carried by the bonded end for grains bonded on

one end.

The equations of motion of a viscoelastic solid were
reduced to a single Poisson equation by assuming that the displacements
do not vary with the coordinate direction along which the acceleration
is applied. A general solution to this equation was obtained for hollow
cylinders of infinite length having generators parallel to the direction
of acceleration and transverse cross sections with p(p # 0) axes of
symmetry. The solution was applied to solid propellant grains of
infinite length having star-shaped internal perforations to determine
the stresses and deformations caused by axial acceleration under the
conditions of zero displacement at the outer boundary and zero surface

stresses at the inner boundary.
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DEFORMATIONS AND STRESSES IN AXIALLY ACCELERATED
CASE-BONDED SOLID PROPELLANT GRAINS OF FINITE LENGTH

Charles H. Parr

1. Introduction

A numerical method for calculating deformations and
stresses in an elastic solid propellant grain of finite length having a
circular perforation and flat ends and bonded to a rigid motor case
was reported previouslyl. While the method considered internal
pressure, shrinkage, and axial acceleration loads, the calculations
presented were concerned primarily with shrinkage loads. Addi-
tional calculations using this method have been made for axial acceler-
ation loads. Two end conditions were considered: two free ends, and
one fixed and one free end. As pointed out previously, it is possible
to present results in dimensionless form in terms of only three
parameters: the inner-to-outer radius ratio a, the length-to-diameter

ratio A, and Poisson's ratio v.

2. Correction to Previous Report

An incorrect statement was made on page 11 of

Report P-61-17 concerning the state of stress at the midsection of a
cylinder of finite length which is geometrically symmetrical about

the midsection and loaded by axial acceleration. It was stated that the
stress condition in the midsection plane was exactly the same as in an
infinitely long cylinder. Actually, at this plane the radial displace-
ment, normal stress, and normal strain are zero as in the infinite
cylinder as will be shown below. The axial displacement and shear
stress and shear strain at the midsection plane, however, cannot be
evaluated from considerations of the midsection alone and must depend

on other properties of the cylinder, specifically, the length.

'Rohm & Haas Company, Quarterly Progress Report on Engineering
Research, No., P-61-17, June 1962,
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Consider the accelerated cylinder in Fig, 1. If the
acceleration is considered positive as shown, a negative acceleration
must be equivalent to an acceleration in the opposite direction.
Because linear analysis is used, a simple reversal of the signs of
the stresses, strains, and displacement results if the direction of
acceleration is changed., Consideration of this point leads to the con-
clusion that the radial displacement along the geometric line of
symmetry m - m must be zero. If the radial displacement is zero,
the radial and circumferential strains are zero along this line by
definition.

To demonstrate that the axial strain is zero is more
difficult. From the equation for radial displacement, Eq. 9 in Report

P-61-17 (neglecting shrinkage terms), namely

a L fyip1oe] - venz, (9)

there results from setting the displacement equal to zero!

b+ [1-v]¢« LEOZ

" (34)

The first and second derivativ~s of Eq. 34 are

%ﬁ+[1-v]§%=2ﬁ“y—z (35)

and
2 2
Pu, )P 2z (36
ap?. apz

Addition of the field equations given by Eqs. 7 and 8, namely

2 2
2 1%, % (7)
apz P P anz

JEquations are numbered consecutively with Report P-61-17.
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and
2 2 2
8y _ 1 g_"lt + & %% (8)
8PZ p 9p 81’]2 anz

and substitution of Eqs. 35 and 36 gives

2 2
L) = v L . (37)
an? an?

Because of the anti-symmetric quality of the radial displacement about
m - m for the axial acceleration loading, it can also be concluded that
8%u
—L .0 (38)
an?
along m-m, i.e., there is an inflection point in the radial displace-

ment at m-m. Eqs. 37, 9, and 38 when combined result in

2
¥ %y _, (39)
87\2 3112

along m-m. Eqgs., 7 and 8 now yield for the general form of ¢ and §

along the line m -m

¢:Ap:+ B (40)
and

yz Cp?+ D, (41)
which can be evaluated with aid of the boundary conditions

u zu_=z 0 atpwel

P M
and
opn=0p=0 atps o
to give
2
4’:%& [1afv = '1'P+_v} (42)
and
v 3% (-2, (43)
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where mn, is the axial coordinate at m - m. By substituting Eq. 42 and
43 into the expression for axial strain, namely

e:-M[g%+2%§]+nz, (44)

n P

the axial strain can be found to be zero along m -m. Thus the three
normal strains, and hence also the three normal stresses, are zero
at the midsection as well as the radial displacement.

Physical considerations similar to those made pre-
viously for the radial displacement will establish that under axial
acceleration not only the radial displacement but all of the normal
strains and stresses as well are anti-symmetric functions with respect
to the midsection, while the axial displacement shear stress, and
shear strain are symmetric functions. Thus, it is possible to deduce
the complete solution of a cylinder which is geometrically similar
with respect to the midsection by considering only half of the
cylinder in the numerical solution, with resultirg significant savings

in time and cost,

3. Alternative Method for Obtaining Axial Displacements

In Report P-61-17, the axial displacement relation,

Eq. 10, was obtained by integration of the axial strain En

1+v “gq_; n_aj)_ ; n‘z
un=——P—S:)apdn+vS;apdn + M6 + 5= + f(p) (10)

It was necessary to obtain the function f( p) by an integration of shear
strain relations when the axial displacement was not known in some
radial plane.

An alternative method of obtaining axial deflections
from the integration of the shear strain relation has proven more

useful than Eq. 10. Elimination of YP'fl from the shear strain relation

du du
n _2[1+v] B
Y . = XTH + ﬁﬂ - _p;l F?] (45)

P
and the radial displacement relation

:JLELI.{¢+ [l-v]cp}-l-pé—Vp’qZ ) (9)

p



results in

du

ap"] - [1:"] {%ﬂ% - [1-v] %%} + vpl (46)

which, upon integrating subject to the condition u_=0atp = 1,

produces

1
un=-¥[1-p=]-[1+v]g{%%‘§_%%‘% do .  (47)
p

4. Results of Calculations for Axial Acceleration,Loadirﬂ

4.1 Two Ends Free

Calculations were made to obtai» stresses ard dis~
placements in a grain having both ends free (free-free cylinder)
subjected to axial acceleration loading ( see Fig, 1), Results could

be presented in dimensionless form with orly three irdependert

parameters - the radius ratio a = %, the ler.gth-to-diameter ratio

Az 2% » and Poisson's ratio v. The displacemerts are represented
in dimensionless form as
u E u E
L and z s
bivg bévg

where u, and u, are the actual radial ard axial displacemer:s
respectively, E is the elastic modulus of the propellant, y is the
propellant density, and g is the axial acceleration., Or most of the
figures the points actually calculated are marked b; apnropriate
symbols so that the interpolation and extrapolaiion of the curves
would be evident. On some figures, symbols were omitted for
clarity,

The dimensionless deflectiorns A, B, ard C defired
in Fig. 1 are plotted in Figs, 2 through 7 as furctions of @ and A for
Poisson's ratiov =0.5. The midsection displacement A approaches
the displacement of an infinite cylinder for large length-to-diameter

ratios as shown in Fig. 2, Note in Fig. 7 that the deflection C is not



results in

du
l+v 0 0
ap‘] =L: ] {ﬁ-[l-v] 8;%}-*- vpl (46)

which, upon integrating subject to the condition Uy E Oatp =1,

produces
L
Z - -
un=_%_[1-pz]_[1+v]§p{%g_‘#_%].g%}dp. (47)

4. Results of Calculations for Axial Acceleration Loadirg

4,1 Two Ends Free

Calculations were made to obtai: stresses ard dis~
placements in a grain having both ends free ( free-free cylinder)
subjected to axial acceleration loading ( see Fig, 1). Results could

be presented in dimensionless form with orly three irdepe::dert

parameters - the radius ratio a = %, the lergth-to~diameter ratio
A= 2‘% » and Poisson's ratio v. The displacemesnts are represented
in dimensionless form as

urE qu
> and " ,
b%vg b%vg

where uL. and u, are the actual radial ard axisl displacemer:s
respectively, E is the elastic modulus of the propellant, y i« the
propellant density, and g is the axial acceleraticom. O: munst of the
figures the points actually calculated are marked b; apnrooriate
symbols so that the interpolation and extrapolaiio. of the curves
would be evident. On some figures, symbols were omitlted for
clarity.

The dimensionless deflectiors A, B, ard C defired
in Fig. 1 are plotted in Figs, 2 through 7 as furctions of « and A for
Poisson's ratiov =0.5. The midsection displacement A approaches
the displacement of an infinite cylinder for large length-to-diaimeter

ratios as shown in Fig, 2, Note in Fig. 7 that the deflection C is not
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a monotonic function of . The variation of A, B, and C with Poisson's
ratio for particular values of @ and A is shown in Figs, 8, 9, and 10,
Figures 11 through 14 and Figs, 15 through 18 illustrate
the effect of A and a un the radial and shear stress respectively at the
propellant motor case interface for a Poisson's ratioof v 2 0.5. A
singularity in the stress distribution occurs at the corner formed by
a free end and the motor case. Thus, any stresses calculated near
these points are physically meaningless because any real material
will deviate from the assumed model. In the figures illustrating stress
distribution, the stresses near this singularity are indicated by dashed
lines. The effect of this singularity on the numerical solution has not
been fully evaluated but is believed to be small even at small dis-
tances from the singular point, The effects of Poisson's ratio on the
displacements near the end are complex, but at points removed from

the ends the stresses are not highly dependent on Poisson's ratio.

4,2 One End Fixed

For cylinders having one end bonded ( fixed-free
cylinder), as illustrated in Fig, 19, results similar to those obtained
for the free-free cylinders are presented in Figs. 20 through 43. Note
that the proper interpretation of the sign of the deflection and stresses
depends on the direction of acceleration while the magnitude is
independent of the direction of acceleration. Figs. 20 through 25
demonstrate the variation of the quantities A, B, and C as defined in
Fig. 19 for various values of A and @ but only for Poisson’'s ratio of
0.5. Figs. 26 through 27 demonstrate the variation of A, B, and C
with Poisson's ratio. Although these figures are not a complete
parameter study, they do indicate the complex nature of the depend-
ence on Poisson's ratio.

Figs. 29 through 33 show the load carried by the end
bond as the percentage of the total load carried by the motor case in
accelerating the grain. Figs., 29 and 30 are crossplots in a and A of
this data for v = 0.5. Figs. 31 through 33 illustrate the dependence

on Poisson's ratio,
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DEFORMATION OF VISCOELASTIC CYLINDERS OF
INFINITE LENGTH AND ARBITRARY CROSS SECTION
UNDER AXIAL ACCELERATION LOADS

Charles H. Parr

1. Introduction

A knowledge of the stresses and deformations in
solid propellant rocket motors due to axial acceleration loads is
necessary for analysis of motor structural integrity. An analysis
of the effects of finite length on the stresses and deformations in pro-
pellant grains having circular perforations under axial acceleration
is presented in another section of this report. This section deals
with the axial acceleration of propellant grains of infinite length whose
internal perforations are not circular but have a number of axes of
symmetry, such as the common types of star perforations.

The equations of motion of a viscoelastic solid were
reduced to an uncoupled set by assuming that the deformations do not
vary with the coordinate direction along which the acceleration is
applied. These results were then applied by the use of conformal
mapping to axially accelerated cylinders with cross sections having p
axes of symmetry (p # 0). A closed form solution was obtained for
the axial displacement and then evaluated for a particular set of

boundary conditions and a particular geometry.

2. Equations of Motion

The equations of motion for a viscoelastic solid may

be shown to be!

x+§-)["_§xﬂ]+c[vzu(t)]+x=yiz.‘i, (1)

!This formulation, with the exception of acceleration and body force

terms, has been given by Elder [1] .
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(x+ g’[%ﬂ—‘l]-rc[vzv(t)] Y yﬁz_z! , and (2)

(K+ g) [a—azi-‘l] +G[v‘w(t)] +Z=va—zﬂ ' (3)

%

where the functional notation of Volterra [ 2]

c[€v)] = #v) (o) +S: £(t,) fl- [G(t-t)]at, (4)

is used, Here
G(t) = viscoelastic shear relaxation modulus,
K(t) = viscoelastic bulk relaxation modulus,

u, v, w = displacements in direction of Cartesian coordinates,
X, Y, 2 respect;ivelyl s

Y = material density,

t « time,

e = =— + = + =— =z dilatation, and
oz

X,Y,Z = body forces in the x, y, z, directions, respectively.
It should be noted that

G[vzu(t)]:VzG[u(t)] i (5)

Under the restriction that u, v, and w are invariant

with z, Eqs., 1,2, and 3 reduce to

The displacements u, v, and w are, in general, functions of x,y, and
z as well as t. For brevity, the dependence on the coordinates is not
expressed in function form but the dependence ont is sometimes

expressed to aid in expressing the Volterra and Laplace functionals.
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k. S 3%u( t) N 3%v(t) + G d%u(t) . a%u(t) FX ey 3%u (6)
31 Loxt 9xdy . ax? ay? at?

-3
~—

K+9Hazu(t) . aZv(t)J . G[azv(t) . azv(t)J+ vy 2Y

3 Ixdy ay? ax? ay? at?
and
2 2 F
G[aw(t) + 8w(t)]+z: Yaw . (8)
ax? ay? at?

Egs. 6 ard 7 are now tncoupled from Eq. 8. Egs.

6 and 7 correspond to the usual plane strain equatiorns of visco-
elasticity and may be solved separately for ary given boundary condi-
tions and body forces. Henceforth, consideration will be given to the
solution of Eq. 8 with geometries limited to cylinders having genera-
tors parallel to the z-axis. Solutions fcr the coupled equations, Egs.
6 and 7, will not be considered in this analysis but can be superposed
with solutions of Eq. 8. Note, however, that for a loading of only
acceleration in the z-directior, the solution of Eqs. 6 arnd 7 is trivial,
i.e., uz2vsz0.

Body forces will be restricted to the weight of the
body. It is evident that the weight per unit volume can be expressed
as the product of the density y and a pseudo acceleration, the
gravitional constant, and can thus be ir.cluded in the right side of
Egs. 6, 7, and 8. Consequently the body force will no longer be
explicitly considered.

Boundary conditions applicable to Eq. 8 may consist
of the specification of the displacement or shear stress as prescribed

functions of time. Typically these may take the form
w(t) = f(t) on B, (9)
and

’Tsz(t) = h(t) on B, s ( 10)
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where B; and B, are the boundaries of a hollow cylindrical body and
s denotes the normal to the surface.

The displacement w can be considered to consist of
two parts, w; and w,, where w,, a function of time only, is the dis-
placement of boundary B, and w, is the displacement relative to the
boundary B,. The displacement w, may be associated with a rigid
body displacement. The displacement w, is associated with the defor-
mation of the cylinder material and is a function of the space
coordinates x and y and of time t. The displacement w, will be further
restricted by neglecting dynamic effects so that the magnitude of the

variation of w, with time is much less than that of w,. Thus

2 2
'w 9°w ,
ot? at?
and since

29&:?—“’1:0,
X dy

Eq. (8) may be written

G[azwz(t) L B%wy(t) } oy Bwyle (1)
9x? ay? at?

Specification of the overall body acceleration may
now be made independently of the displacements associated with
deformations,

To obtain a solution to Eq. 11, it is convenient to use
the Laplace transform with respect to time to reduce the problem to
an associated elastic problem. Applying the Laplace transform to the
functional G[wz( t)] there results

L {c [wa t)]}
pwaAp) G(p) (12)

where p is the transform variable, not to be confused with the

G(0) Wylp) + Wa(p) [ p G(p) - G(0)]

number p of axes of symmetry of the transverse cross section,

Expressing the acceleration of the body as a specified function A(t),
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Bwlt) . oAy (13)

at?
where
A( t) = On t<o0 ’

Eq. 11 becomes

Vz ;’z( P)

YA(p) (14)

pG(p)
or
Fwp) = vypA(p) T(p) (15)
since
PE(P) = _1 ’
pJ(p)

where J(p) is the Laplace transform of the shear compliance.

Taking the inverse Laplace transform, there results
FL Fy(p)) = L {vpA(p) T(p)} . (16)

where L"{ } denotes the inverse Laplace transform. Letting

L-I{E(P)} s (17)
L {ypT(p) A(p))

Eq. 16 becomes

2 2
A e (18)
9x? ay*

Note that  is a function of x and y only and is not a function of time.
Eq. 18 is valid regardless of the time dependence of the acceleration
and regardless of the time dependence of the shear compliance.
Further it can be seen from Eq. 18 that the displacement function ¢
defined by Eq. 17 depends solely on the space coordinates x, y and the

boundary conditions.
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If the acceleration A(t) is applied as a step function,
A(t) = gH(t) ,

where H(t) is the unit step function and g is a constant, then
A(p) = g/p, and

LG L walt

Thus for a step function in the acceleration, the axial displacement

at each point is directly proportional to the creep compliance.

3. Application to Star Geometries

The solution of Poisson's equation, Eq. 18, was con-
sidered for star geometries which are applicable to solid propellant
grains. Consider the shape shown in Fig, 1. The internal perforation
consists of p branches or star points and the external boundary is

circular., Wilson [ 3, 4] demonstrated the mapping of such regions by

Fig. I Typical star perforated propellant grain.
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fitting the internal perforation with a mapping transform which maps
the star shape in the z* or real plane’ onto the unit circle in the g or
transformed plane. Likewise, the circle defined by p=I" in the {
plane corresponds to an irregular line in the z* plane. However, if I'
is sufficiently large the corresponding contour in the z*-plane is
sufficiently regular to be considered circular.

The mapping function used by Wilson is given by
B C D

+ +
-1 2p-1 3p-1
¢P P P

z¥ = w(§)= A§+ t oo, (20)

where p is the number of axes of symmetry of the grain cross section.
Kantorovich and Krylov [ 5] show that under such a transformation,
the Laplace operator transforms into

(az+az): 1 (a=+a=” (21)
ax? ax? ot ()] ? 9¢? an? »

where w'( ) is the derivative of w with respect to {. Expressing Eq.

2l in polar coordinates by means of
. i6
{t=&+in=z=pe s
the Laplace operator becomes
2 2 2
( 2 | 0 ) ] 1 3
9x? oy?

2
2 2 +_153—+ iz _9_2) ) (22)
lo' (2)]® | 8p PP p? o0

Using Eq. 22, Eq. 18 may be written
2 2
R T B At L. (23)
L]

apz P p pZ

Now consider the general form of w({),

'To avoid confusion with the z coordinate, an asterisk is used to

denote the complex variable z¥* z x+ iy .



W g) = z e A

Then
w (g = X(l np)
or
(1- np)C
w (L) = cos np@ - i sin npO]
Then

or, upon expanding,

(1-np) (1-mp)C_ C
o' (g)]? = z p(m+n7p 2 ™ cos mpd cos np®
m

ns H

(1-np) (1-mp)C_ C
+ pf+n)p

Iis ms

which simplifies to

n_M gin mpO sin npd ,

-57-

(24)

(25)

(26)

(27)
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(1-np) (1-mp)C_ C
lo (g)]? = ; ; (m:)p 2= cos(m-n)pe . (28)
[
ns masa

Let k=m-n., Then, after considerable manipulation, Eq. 28 may be

rewritten in the form

2 2
(l-np) Cn

| (g)]? = — %
n=
=% (l-np)(l-np-kp)C_C
+ 2 cos kp8 REZOE ootk | (29
- ns=z

The solutions to Laplace's equation which will form
the complementary part of the solution to Eq. 23 are well known'.

Those forms suitable for the problem under discussion are

Y = (H pkp+ Ly p-kp) coskpd + Ugn p + V , (30)

where Hk , Lk' U, and V are to be determined from the boundary
conditions.
The particular solution of Eq. 23 may be found by

considering

Y2 = M, p” cos kpo . (31)

Substituting this relation together with Eq. 29 into Eq. 23 and equat-
ing coefficients of cos kp® results in

!See, for instance, Moon and Spencer [ 6], p. 14.
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az2~-(2n+Kk)p ,

Ch Catk
M, 2 k#0 , (32)

and

The particular solution is then formed by a double series in n and k
of terms given by Eq. 3l.
The complete solution is then given by adding the com-

plementary and particular solutions which results in

cZ
Y = -zr-l- pz(l-np)+Ulnp+V

D=

Cc_C
+ H, pkp + L, p-kp + n “n+k p2-(Zn+k)p

1 nx

cos kp® . (33)

This is the solution for the axial displacement function { in an infinite
cylinder whose contour in the transverse cross section can be defined

by a mapping function of the form Eq. 20 (or Eq. 24).

4, Satisfaction of Boundary Conditions

Consider the boundary conditions
w(x,y,t) = wy(t) + wy(x,y,t) = £(t) on B, (9)
and

Tez = h(t) on B, , (10)

By definition
wo(B1,t) = 0 (34)
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so that the first boundary condition, Eq. 9, can be written

wix, yt) = wy(t) = £(t) = SS A(t) dtdt onB, . ( 35)

Considering the second boundary condition, Eq. 10, where s is the
outward normal, the shear stress can be expressed in terms of
shear strain and, in turn, in terms of the axial displacement w, and

normal displacement ug resulting in

aus( t)

rye = S[rto]s o[ e+ 2pa] o] . o

Taking h(t) = 0, boundary condition Eq. 10 thus reduces to

G[B_vavzs(_t)] =0 on B, . (37)

Eq. 37 is a nomogeneous Volterra integral equation and the only

continuous solution is zero [ 7] . Thus

dw

El =0 . (38)
For the mapping function used, it can be shown that

9 1 3

3 T pOl % (39)
on an internal boundary and

9 1 9

3 = o (0T 9 (40)
on an external boundary.

Defining B, as the outer boundary and B, as the

inner boundary, the boundary conditions in the transformed plane,
with the use of Eqs. 34, 38, and 39, become

wp(t) = 0 on B, (41)

and

dwy(t

0 onB, . (42)
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Since these conditions are independent of time they may beapplied

directly to the function § to yield

=0 on B, (43)
and

%\k =0 on B, . (44)

)

Letting

p=zl on B,
and

p=B on B, ,

the unknowns Hk’ Lk’ U, and V in Eq. 33 can be evaluated with the
aid of Eqs. 43 and 44 allowing Eq. 33 to be written as

v = %;_ {pz( L-np) _ 52(1-10) _ (1 1) gn (%)}

ns

o

z-l?pg-kg N BZ( l-np)) _(BZkP _ p2kp
1+ gokp

n cn+k pZ.( i-np) _ BZ( l1-np)

p—kp cos kp8. (45)

5. Evaluation of Displacements and Shear Stresses

Due to the form of the mapping function w(¢), Eq. 24,
an inverse is not easily obtainable. Thus the value of {=p eie
corresponding to a given location z* z x+ iy cannot be explicitly
obtained but must be approximated. A straightforward way of evalu-
ating the expression for displacement is to perform the evaluation
of y and z* for a series of p's and 6's and then use interpolation to

obtain values of displacement at specific values of z. In this manner
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the dimensionless displacement y can be evaluated at any poirt for a
given geometry frcm Eq. 45 by specifying the Cn and 8. The actual
time-dependent displacemert w, can then be obtained by performing
the operations indicated by Eq. 17 once the acceleration A(t) and the
creep compliance J(t) are specified,

The shear stress is somewhat more difficult to
evaluate, Since the displacements u and v in the x -y plane are zero
for a loading of axial acceleration, the shear stresses due to the
axial acceleration load are givex by

Tiz = G[aTwlj-t—)] , : (46)
where f is any desired line lying in the z¥ or x-y plare. Taking the

Laplace transform of this expressior. with respect to time,

T,,(P) = pG(p) -5—18;;( ) (47)

the transformed shear stress c¢in be written, with the use of Eq. 17,

as
7P =y A(p) 5P
or simply
JPERPCR- (48)

Usually the maximum valuzes of shear stress at a
point are wanted. These may be obtaired in the followirg manner,
The relation of the derivative along a lire £ in z*-plane to the

derivative along a corresponding line A in the {-plane is given by

9 1 9
ﬁ: m)—] a—;% . (49)

In terms of the p-8 ccordinates

o =g% % +3?%<’97 ST (50)
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But

=~

= cosa (51)
and

%-;\Lel = sina , (52)

where a is the angle between A and the p coordinate line, Substituting

Eq. 51 and Eq. 52 in Eq. 50 and maximizing with respect to a, there
results

) ay |2 1 [oy f?

i \/(’a% LB (53
max o]

Eqs. 48, 49, and 53 yield

(8] - (8]

|w(g)]?

s * VA

The displacement function ¢ has been evaluated for
the six-point, star-perforated shape shown in Fig. 2 which has been
mapped with a 50 term mapping function. The original ballistic con-
figuration is indicated by the dashed lines. The curvilinear coordi-
nates are shown over a part of the cross section, demonstrating the
slight mismatch between the true circular outer boundary and the
curvilinear coordinate. A contour map of the displacement is shown

in Fig, 3 for a step-function acceleration load, i.e., A(t)= gH(t).
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Fig. 2 Curvilinear coordinates obtained by conformal mapping .
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fig 3 Contour map of displacement function ¥.
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